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Abstract This work is the second part of a review on

the role of free iron forms in cardiovascular diseases. Here,

we stress on various aspects related to the iron form that are

free of poorly chelated to iron biocarriers, as for example

the NTBI (Non Transferrin Bound Iron). We report on

problems relating the determination of such free iron forms

and, after all, on their implications in cardiac diseases as

well as in venous insufficiency.

Keywords Free and poorly chelated iron; Biocarriers;

Cardiovascular diseases; Venous insufficiency

Non-Transferrin Bound Iron

In the first part1 of the review we outlined the

role of free iron in vascular diseases. Actually, it is well

known that most of the body's iron is bound to the

protein and non-protein biomolecules (carriers) in order

to render it bioavailable, so as to move it between the

various compartments and overcoming the great toxicity

that characterize the free iron, due to its ability to create

organic bounds, generating oxidative and nitro-oxidative

stress. The most relevant iron carrier is the transferrin, while

the main iron deposit is the ferritin. In recent years great

attention has been paied to the non-transferrin bound iron

(NTBI), a form of free iron highly reactive. Such poorly

chelated form of iron could play a role in a number of

pathologies and cannot depend on a systemic overload

condition of iron. This should lead to a reflection since, for

example, even in a condition of iron-deficient anaemia it is

possible to find such toxic forms of iron released by their

transferrin and ferritin carriers.

The non-transferrin bound iron (NTBI) forms, also

denote as non-protein bound iron (NPBI), are grouped

in different chemical forms with different characteristics.

The cytoplasmic labile iron pool (LIP) is involved in

the regulation of the cytosolic iron regulatory proteins

(IRP)2. Further evidences show that there exist unbound

forms also for the copper (non-ceruloplasmin bound copper,

NCBC), that are toxic and relevant in the pathogenesis of

neurodegenerative3,4 and cardiovascular diseases as well as

in the atherogenic process5. The term "Labile Iron Plasma,

LIP" was coined by Greenberg and Wintrobe in 19466. It

was then modified by Jacob in 1977 in "Transient Iron Pool,

TIP"7, while Kruszewski8 refers to it as "Labile Iron Pool,

LIP", that is, as the poorly chelated iron with low molecular

weight that is able to rapidly cross the cells. Some authors8,9

have also used the term of "catalytic iron pool" to indicate

these scarcely bound, highly reactive iron forms, able to set

off oxidative stress. Chelation kinetics studies have shown

these "iron free" forms starting from the chelators used and,

in this way, a number of techniques have been describes,

such as:

- BDI: bleomycin detectable iron10
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- DCI: desferrioxamina chelable iron, a term

used by Breuer to indicate NTBI iron11

- BPS: bathophenantroline-disulphonate, a

chromogenic chelator detecting the free iron at 532

nm12

In normal conditions, the transferrin is saturated with the

iron about at 20-35% (20 µmol/L), and this represents

the main non-Heme circulating iron form. However, the

transferrin saturation can increase, ensuring in this way an

effective chelating mechanism and neutralizing a possible

increase in the iron amount. For this reason, in a healthy

individual the circulating NTBI (Non Transferrin Bound

Iron) is essentially absent, its plasmatic levels being

less than 1 mol/L, hard to detect by the majority of

actual lab methods13. In pathologic conditions due to iron

overload, such as thalassemia, hemochromatosis etc.14,15,

a progressive increase in the free NTBI iron content also

corresponds to an increased iron saturation of transferrin.

While this mechanism is intuitive and explicable16 its

contrary, that is, normal or little increased levels of

transferrinic saturation and increased circulating free iron,

is less easy to understand17.

For this reason the early studies on NTBI iron

were mainly performed in iron overload conditions.

Subsequently, and surprisingly, it has been pointed out that

even in normal conditions (in absence of iron overload) a

non-vanishing part of free NTBI iron can be present. Than,

the obvious queston follows: "how it is possible to find

iron in its free form even when a formidable chelator as the

transferrin is present?" A number of possible answers have

been proposed to the above question. However, they appear

to be partial, due to the numerous aspects not clearly defined

and still object of investigation.

We begin focusing on the following point. The main

sources of iron in humans derive from two fundamental

mechanisms:

- a) the absorption by the intestinal mucosa (an

exogenous food source);

- b) the recovery of iron past the lysis of

aged erythrocytes and the macrophage activity (an

endogenous source).

The average life of red cells is 120 days, During this time,

they runs about 300, 400 Km and, once aged, they show

ever more serious alterations, being eventually destroyed

and their components recycled. In this way, the proteins

are reused for different scopes, the iron is disassembled

and reused by other cells to build red cells or any other

molecules that require it. The released heme is degraded

by the heme-oxygenase microsomal enzymatic system, that

requires oxygen and NADPH and finally ends as bilirubin

that enters the bowel and performs a function in the food

digestion. The endogenous source of iron deriving from

the previously described erythrolysis mechanisms is more

relevant with respect to the exogenous one, as for the latter

one the control and the absorption by the intestinal mucose

is particularly selective and finely tuned.

As an example, in case of hemolitic anemia or of

transfusion, the excess of erythrocyte lysis determines an

increase of iron that binds its chelator, the transferrin,

causing an increase of its saturation index and, at the

same time, releasing a certain amount of free NTBI

iron18. In different conditions, as for example in absence

of transferrin, the circulating levels of NTBI iron can

reach values of 20 µmol/L, while when the transferrin is

present but in reduced quantity the previous values are,

in general, less than 10 µmol/L19. It is well known that

the iron is able to lead to an oxidative stress; on the

other hand, the oxidative stress can release free NTBI iron

from different sources like the "iron sulphur proteins",

ferritin, hemoglobin, etc., as it has long been reported in

the literature20-23, and this observation should induce to

reflection. In summary, the sources of free NTBI iron can

be generated in different pathologic conditions in which

to the availability of high level of iron but also when

the levels of transferrin iron saturation are normal or low,

as consequence of oxidative stress. In fact, during the

oxidative stress, an amount of iron can also be released

by stable sources (ferritin, heme), triggering a vicious

circle24,25.

In Table I we report some pathologic conditions

in which circulating forms of free, unchelated iron are

observed26:

In Table I it can be noticed that the higher free

iron concentrations are not revealed in the hereditary

hemochromatosis, as it could be expected, but in the cancer

in course of chemotherapy27. Due to its cation nature,

the iron easily binds to anion substrates giving rise to a

number of new chemical compounds grouped, as already

stated, under the denomination of non transferrin bound iron

(NTBI). To the best of present knowledge, among all these

substances in which the iron is readily available, the most

frequent and dangerous are exactly those generated by the

cation iron, like albumin, citrate, acetate, phosphate, etc.

For example, in the hemochromatosis the more abundant

form of NTBI if that one bound to citrate and acetate28,

the other form being that one bound to albumin (anion

protein) also in conditions of transferrin poorly satured of

iron29. These isoforms of NTBI iron30 in which the Fe3+ is

mainly bound to citrate and to albumines and, potentially,

also to acetate, malate and phosphate, also increase the risk

of infection31 (indeed, it is known that the iron is used by

bacteria, fungi etc. to improve their replication), as well as

the toxicity due to the endocellular overload of NTBI that,
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since has not the fine tuning mechanisms mediated by the

transferrin, is able to directly enter the cell32.

Pathology Free iron

form

Concentration

((µmol/l )

Hereditary

hemochromatosis

NTBI 4.0 — 16.3

Thalassemia

major

DCI 1.7 — 8.6

Diabetes mellitus NTBI 0.62 ± 0.43

Severe renal

impairment

NTBI 0.1 — 13.5

Cancer in course

of chemotherapy

NPBI 10.6 ± 6.6

Table I - Pathologies and corresponding observed free

iron forms (after Patel M, 2012, modified). NTBI -

Non Transferrin Bound Iron, DCI - Desferrioxamine-

chelatable iron, NPBI - Non Protein Bound Iron.

Modalities and problems related to NTBI iron

determination

As previously discussed, it is clear that the NTBI

iron forms that are not stably bound to carriers (transferrin,

ferritin, heme, etc.) are numerous and probably not yet

completely known. As a consequence, the methods used

for their determination are correspondingly numerous and

constantly updated. Basically, the techniques used are the

following:

- 1- Inductive estimate or dosing, based on the

use of glycopeptide antibiotics like the bleomycin

used in oncology (10) (bleomycin detectable iron,

BDI). In presence of iron, the bleomycin is able to

degrade DNA, producing free radicals. By a complex

method, introduced for the first time by Gutteridge

et al.33, it is possible to dose the iron not bound to

transferrin.

- 2- Dosing by the use of different chelator

agents, followed by the separation and dosing of

the iron by analytic techniques (HPLC, atomic

absorption, spectroscopy, etc.). During the years,

different chelating agents have been used such as:

- EDTA (ethylenediaminetetraacetic acid )

Hershko and coworkers, 197834,35

- NTA (unsaturated transferrin)36

- DCI: desferrioxamina chelable iron11

- BPS: bathophenantroline-disulphonate, a

chromogenic chelator able to detect free iron at

532 nm12, etc.

- 3- Direct dosing of NTBI iron by fluorescence

techniques, that are the most recent methods also

with the help of siderophores like the azobactin37 and

those that are currently being used as routine 38,39.

The world's leading experts gathered on 2005 and on

2016 to compare the different techniques in view of

their validation and standardization40,41. Despite a little

preference for the fluorescence, an agreement has not yet

reached towards the methods to be used as standard. In the

last meeting41 60 samples extracted from patients affected

by systemic iron overload (hemochromatosis, thalassemia,

transfusion patients, etc.) have been sent to five labs

all over the world and ten different laboratory kits have

been tested for the determination of iron NTBI and LIP,

without reaching, as we already said, an unique view,

with an exception to be noticed, that is, the transferrin

saturation index, that revealed to be the parameter in the best

correlation to the possible presence of circulating NTBI-

LIP iron. These researches are obviously performed on

patients affected by systemic iron overload, that is, with

transferrin highly saturated by iron, and not in pathologies

with normal transferrin saturation, though in the literature42

the presence of NTBI-LIP has been pointed out also in

these circumstances. The iron that is not stably bound to

its main carrier (the transferrin) represents a challenge to

the different anti-oxidative mechanisms. Such NTBI iron

enhances the oxidative stress mainly through the already

cited Fenton and Haber-Weiss reactions (Figure 1): with an

increase of the oxidative action via the different radicals

that are produced (hydroxy, hydrogen peroxide, superoxide,

hypoalose acids, etc.).

Figure 1 - Fenton and Haber-Weiss reactions.

Iron and free iron fraction in cardiovascular

pathologies

One of the early remarks on the relation between iron

and cardiovascular pathologies was made by Sullivan43 on

1981. He pointed out how the lesser amount of iron deposits

(ferritin, etc.) in menopause and post-menopausal women

plays a protective role, as well as regular phlebotomy

appears to do. Another randomized study shows, during an

observation period of 5 years in a sample of 1931 subjects,

the greater incidence (2.2 times) of myocardial infarction in

patients with a ferritin level > 200 µg/l with respect to those
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with a level <200 µg/l. A different work45 points out, during

a period of 6.4 years in a sample of 99 men, that subjects

with low values of the ratio transferrin plasmatic receptor

(tfr)/ferritin (that means large iron deposits) present a risk

of myocardial infarction 2-3 times higher with respect to

subjects with a larger tfr/ferritin ratio (Figure 2):

Figure 2 - Relation between transferrin plasmatic receptor/

ferritin ratio and iron storage.

Many works demonstrate the relation existing among

iron and atherogenic progression.

- In the famous Brunico study[i], five-years long

with a randomized sample of 125 men and 125

women age 40-79 years and a participation in the

trial of 93.6%, a strong correlation between carotid

asymptomatic atherosclerosis and iron deposits

increase (particularly with a ferritin level >50 µg/L)

is proven46,47. In48 it is proved that in patients with

end stage renal disease receiving an iron supply, is

observed a thickening of the intima in the common

carotid larger than in subjects that did not receive such

a supply.

- A number of independent studies49,50 show

that in blood donors to low iron deposits levels

correspond a lesser incidence of cardiovascular

pathologies.

- The work51 confirms a clear correlation in

healthy individuals between the amount of iron

deposits (iron storage) and asymptomatic carotid

atherosclerosis studied by the ratio tfr/ferritin.

- In52 (it is shown that chelation in patient

affected by cardiovascular diseases is associated to an

improvement of the endothelial function.

- The study53 clarifies the relation between the

iron food content and the coronary risk in a follow-

up of 4 years and a cohort of 44933 men without any

history of cardiovascular pathology, demonstrating

the causal implication not so much with the iron

quantity introduced with the food as with the heme

iron content and the ferritin. Recently, in a meta-

analysis of 21 valid studies Hunnicutt54 remarks

the correlation among dietary iron, iron storage and

coronary risk. The dietary iron considered in the

finnish work by Salonen55 appears to be correlated in

a significant way to the coronary disease. The author

reports that an increase of 1.0 mg of dietary iron

corresponds to an increase of 5% of the coronary

risk. The heme iron contained in the meat (myoglobin

and hemoglobin iron) represents about the 40% of

the food iron and, thanks to its high bioavailability56

its absorption is not inhibited with the negative

feedback by the high levels of circulating ferritin, as

happens to non-heme iron (inorganic iron)57. Non-

heme iron can also be found in meat, lever, egg yolk,

vegetables, etc. and is present both as Fe2+ and Fe3+

form. Recently, Wolk58 proved by meta-analysis a

significant increase of cardiovascular mortality after

daily intake of 50 g meat, as already observed by

Micha59 in relation with treated meat compared with

fresh ones.

- Another point worth of attention is that

all agents which inhibit the dietary absorption

of iron (polyphenols, soy, casein, whey, chicken

egg albumen, etc.) affect non-HEME iron only.

Furthermore, adding Calcium does not affect the

absorption of neither HEME nor non-HEME60 iron,

in spite of what has been reported during previous

studies (Figure 3).

- According to some authors61 exercising can in

many ways play a major role in iron excretion.

- Some studies show that there is a correlation

between cardiovascular conditions and iron62-65.

- Very interesting experimental studies66-68

show that adding NTBI iron to cultures of human

endothelial cells increases the expression of VCAM

1 (Vascular Cell Adhesion Molecule, etc.) as well

as leucocyte rolling and endothelial barrier damage.

This phenomenon can be stopped by adding iron

chelating agents (desferrioxiamine, dipirydyl) to the

cultures of human endothelial cells67, as it is also

confirmed by another study on endothelial cells in the

human aorta68.

There are more studies confirming the correlation

between iron and cardiovascular condition compared to

those which deny it68-71, and albeit scientists are still

divided concerning this topic, it is necessary to highlight

that many of the studies which refused this correlation

have been carried out with inappropriate techniques and

indicators.

More recent studies72 verified that NTBI can play

a major role in terms of cardio toxicity in myocardial

infractions (STEMI: ST evaluation acute myocardial

infraction), especially as far as MVO (Micro Vascular

Obstructions) and HEM (Hemorrhage) are concerned, the

latter being a source of NTBI.
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Figure 3 - Food causing increase or decrease of dietary iron absorption.

Figure 4 - Cardiovascular toxicity of NTBI iron.

This study points out the close ties between NTBI,

CK-MB and troponin; even though the number of patients

was rather scarce, such a correlation will definitely be the

object of more and more thorough studies.

The study FeAST highlights that even chronic

obstructive arterial disease in lower limbs is correlated

with iron73; furthermore other randomized experiments

point out that the mere phlebotomy significantly reduced

the mortality rate (myocardial infraction, stroke) among

patients suffering from chronic obstructive arterial disease

in lower limbs74.

The cardiovascular toxicity of NTBI can be summed

up as in Figure 4.

In one of his most recent papers75, Brissot highlights

that even though there is not yet full knowledge of every

factor able to produce NTBI, a major role is played by the

iron loss in the transferrin-ferritin, by a poor iron re-usage

during the erythrocyte lysis and, even more alarmingly, by

the condition of chronic oxidative stress.

Other authors76,77 highlight that NTBI is a valid

marker as far as biological damage is concerned, and not

only in iron overload syndromes.

The main factor which regulates the iron output of a

cell is the ferroportin under the effect of plasma hepcidin;

therefore, low levels of hepcidin can trigger high level

of transferrin saturation and NTBI iron, which is easily

absorbed by the cells.

Recently Riško77 shows that patients with chronic

cardiovascular conditions (myocardial infraction, stroke,

peripheral obstructive arterial disease) present monocytes

free iron-LIP concentration higher than usual; such

an anomaly is statistically correlated to the following

parameters:

- TfR/F (ratio: circulating transferrin receptor/

ferritin)

- Hepcidin plasma values

- Visceral fat (insulin-resistance)

- ABI index (Ankle-Brachial Index or Winsor

index, i.e. an index used in obstructive arterial disease

in lower limbs)
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- Arterial stiffness (Pulsatility Index (PI) and

Resistance Index (RI))

Such parameters, therefore, highlight the possibility that the

intra-monocyte LIP (Labile Iron Pool) can be a sensitive

index of the risk of atheroma formation.

Nevertheless, it is important to remark that though the

lack of iron is related to cardiovascular disease, the study

ARIC78 on anemic patients show that "virtue stands in the

middle". The ratio of body iron concentration and risk of

occurrence of cardiovascular condition is not linear; on the

contrary, it can be described as a U-shaped curve79.

Iron, iron-free and atherosclerosis

Over the past 30-40 years many

studies5,24,42,46,48,51,62,66,67,77,78 highlighted how the iron

mediated oxidative stress played a major role in the

formation of the atherosclerosis, also recently mentioning

the toxicity of hemoglobin-free (Hb-free) and its iron

content derived from erythrocyte lysis79.

For years the iron-induced oxidative stress was

considered to be the main pathogenic trigger of

atherosclerosis. Today, however, it is known that the factors

that trigger the formation of atheroma are many and

complex80, as far as iron and NTBI are concerned.

Specifically, hydroxyl radicals oxidize lipids

and proteins, causing endothelial dysfunctions, cell

proliferation (activation of monocytes- macrophages),

DNA and immune system damage.

The oxidation of the low density lipoprotein (LDL) is

a focal point in the formation of atheroma.

The reactive oxygen species (ROS) can alter the

triglyceride fatty acid chains, especially the unsaturated

ones, cholesterol esters, and protein structures with

formation of Malondialdehyde (MDA) peroxides or

hydroxides, pentanes, etc., the oxidation output of the

cholesterol, i.e. oxysterols deriving from phospholipids, the

alteration of apolipoprotein into carbonyls or amino acids

(cysteine, cysteine, histidine, etc.), the formation of lipids-

protein structures known as lipofuscin81.

Chemical analysis of lipofuscin samples shows

the presence of protein (20-50%) and lipid (30-70%)

components. The protein component can vary, whereas the

lipid component is composed by triglycerides, saturated

fatty acids, cholesterol, phospholipids carbohydrates and

metals, especially iron82.

The LDL oxidation represents a crucial moment in

the process of the formation of atheroma, triggering:

- 1 endothelial activation and dysfunction;

- 2 macrophages activation and transformation

into foam cells;

- 3 adaptive modification in the immune

response.

Most of the studies on the LDL oxidation (Ox-LDL)

reported in vitro experiments where pro-oxidizing agents,

such as iron, were used. So far scientists are not certain that

the LDL oxidation occurs mainly on arterial walls, even

though this is almost always the case for patients suffering

from diabetes or cardiovascular diseases83. Moreover, the

LDL oxidation appears to be correlated to the rise of the C-

reactive protein (CRP)84.

It appears that the endothelial dysfunction triggers

the cell adhesion molecule (I-CAM 1 or E-Selectine); as

a result, the circulation monocytes are then divided in two

groups, one composed by the monocytes trapped in the

endothelium and the other one by the monocytes which

flew through the sub-endothelial space. This grouping

takes place under the effect of cytokines such as M-

CSF (Macrophage Colony Stimulating Factors, produced

by macrophages themselves), endothelium cells and T

lymphocytes, macrophages, specifically macrophages M1

(pro-inflammatory) rather than M2 (anti-inflammatory)84.

Macrophages M1 express Ox-LDL receptors on

their surface for Ox-LDL that, once absorbed, turn the

macrophages into foam cells due to the accumulation of

cholesterol esters, etc. This macrophage population would

also be the cause of both the proliferation of smooth

muscle cells that migrate towards the arterial endothelium,

and of the atheroma instability due to the activation of

metalloproteinase 1,3,9 (MMP 1-3-9) with hydrolysis of the

collagen in the atheroma fibrous cap85,86.

M2 macrophages have opposite tasks compared to the

M1, and are also able to trigger several metalloproteinase

(MMP 9-12-13-14) that are important in the re-shaping

of the atheroma. Compared to M1 macrophages, M2

macrophages have a lower iron concentration 87. In

addition, chelating substances, such as the lactoferrin, can

play a protective role88; furthermore, the M1 activation can

be directly induced by iron89.

Another factor that has recently been studied is the red

blood cells phagocytosis in hemorrhage areas, specifically

in atheroma90. This phenomenon is an important factor

determining iron accumulation in Mhem macrophages

that have features similar to the M2 macrophages

(protective)91,92. These HEME filled macrophages also

present high HMOX1 levels (heme oxygenase-1, an

enzymatic form which, contrarily to HMOX2, is inducible)

that can trigger M1 macrophages (pro-inflammatory).

The heme oxygenase is an oxidoreductase that

catalyzes the transformation of the heme into biliverdin,

carbon monoxide and iron. Thanks to the biliverdin
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reductase, the biliverdin is later on transformed into

bilirubin. The iron released induces the expression of the

intracellular apoferritin with iron sequestration from the

ferritin and iron redox reduction, as a result of the protective

effect of the ferritin.

The heme oxygenase appears to play a crucial role

in the cellular iron metabolism regulation; furthermore,

it is an enzyme that can be induced by many factors

such as oxidative stress, inflammation, reperfusion, etc.

It is worth being noted, however, that free heme can

directly activate M1 macrophages by interacting with

Toll-like receptors expressed by many cells (monocytes,

macrophages, mast cells, etc.), TLR4 (Toll-like Receptor

4) and innate immunity cells. Contrarily to HMOX2, the

enzyme HMOX1, (heme oxygenase 2) is an inducible stress

enzyme and its oxidoreductase regulates vascular activity

and prevents inflammation and formation of atheroma93.

As a matter of fact, HMOX1 polymorphism or

deficiencies can be linked to the occurrence of many

diseases, especially atherosclerosis, cardiovascular disease,

etc.94,95.

Another study96 shows that the iron contained in the

atheroma is a risk factor which can be modified as far as the

formation of atheroma plaques is concerned.

Iron and free iron in the chronic venous

insufficiency

In the advanced stages of chronic venous disease that

can be considered as insufficiency (CEAP Classification:

C3-6)97,98 after the occurrence of edema (venous edema,

CEAP: C3) a progressive tissue dystrophy takes place,

usually evolving to ulcers. This kind of dystrophy

is named lipodermatosclerosis (LDS, CEAP: C4b) and

it is characterized by the progressive accumulation

of hemosiderin iron in dermis and hypodermis. Legs

undergo a hyper pigment production and hardening

transformation, known as "inverted champagne bottle

leg". Lipodermatosclerosis was initially described in

1955 by Huriez as Hypodermitis sclerodermiformis99,

and later on many other authors denoted this condition

by different names (liposclerosis, sclerosing panniculitis,

lipomembranous panniculitis associated to venous stasis,

etc.). However, this condition is today known in the

scientific literature with the name of Lipodermatosclerosis

(LDS).

The inferior limbs' chronic venous stasis triggers

ambulatory venous hypertension and, finally, ends up

rising the transmural pressure, with the appearance of

erythrocyte extravasation (extravascular hemolysis)100-102

which is also cause of the local hemosiderosis103 due to

hemosiderosis-iron overload.

More recent studies104-107 have progressively

showed and clarified that the hemosiderosis-iron overload

levels reach their peak in the chronic phase of the

lipodermatosclerosis, especially subcutaneously, and then

fall due to a progressive fibrotic substitution. Other studies

where MRI was used108 demonstrated the progressive

reduction of subcutaneous fat and its peculiar "honeycomb

pattern". The necrosis appears to affect both the adipose

lobe and the inter-adipocitary septum (lobe-septum

necrosis); the iron can directly trigger lipolysis due to the

oxidative stress109.

The hyperpigmentation occurring in

lipodermatosclerosis has some distinctive points:

- melanine accumulates both in the stratum

basale and in the dermis; melanocytes migrate

towards the dermis110;

- hemosiderin sediments in dermis and

hypoderm107,111 (107, 111);

- melanocyte melanin synthesis appears to be

secondary to iron overload and triggered by oxidative

stress and iron mediated oxidative stress112-114;

- melanin acts like a powerful iron chelating

agent115,116 and the melanocyte migration towards

the dermis might be due to the melanin chelating

activity (biological defense strategy).

The correlation between the iron overload in tissues and

venous ulcers in the lower limbs was reported for the first

time by Ackerman in 1988117, which observed that the

consistent iron hyper overload in the ulcerated tissues was

about 10 to 15 times higher compared to the same area in

the counter lateral limb.

The presence of hemosiderinuria118 is later reported

in advanced dystrophic-ulcerative stages of chronic venous

insufficiencies and, later on, in other disorders such as

lymphedema, connective tissue disease, but not in ischemic

ulcers119.

Other authors120 highlight that iron is present in the

ulcer fluid taken from chronic ulcers in lower limbs, but not

in that extracted from acute ulcers.

Further studies highlight the relation between

tissue iron overload and venous ulcers and some HFE

polymorphism (hemochromatosis gene)121-125 and also

provided therapy evidence by using topical chelating agents

which fasten the venous ulcer healing process126,127. Some

authors128 used the PIXE (Proton Induced X-ray Emission

Spectroscopy) to highlight that the iron concentration rises

with the evolution of the disease; in fact, the iron deposition

rate is higher in incompetent veins compared to competent

veins (surgically collected veins); this rate is statistically
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correlated to oxidative stress parameters and to the ratio

intima-media. The conclusions of these studies are that the

dosage of the PIXE iron can be correlated to the evolution

of the insufficiency.

Ferritin and hemosiderin represent the main ways iron

can sediment; they differ each other as follows:

- hemosiderin is not water-soluble, but

undergoes denaturation;

- ferritin is water-soluble but is temperature

resistant up to 75°C (167°F).

Hemosiderin iron is stored in the internal part of the protein

shell, especially in the form of ferric hydroxide (Fe(OH)3)

as a consequence of its degradation and lysosome

polymerization129. Ferritin is normally the predominant

way in which iron is stored in the tissues; hemosiderin,

however, can become the predominant form in case of iron

overload, causing biological damage130 (Figure 5).

In fact the hemosiderin, especially in acid conditions

(inflammation, ischemia), can release iron enhancing

oxidative stress. When these conditions occur, the

hemosiderin can turn itself from iron chelating agent to an

iron releasing agent in the form of sediment:

For example, iron can sediment due to erythrocyte

extravasation (erytrhodiapedesis, hemolysis related causes,

etc.) both in ferritin and hemosiderin (Figure 6). Moreover,

iron can be directly be mobilized by hemosiderin or

ferritin130-134.

An interesting study on animals135 was led by

inducing skin iron overload in three different ways (HFE

mutation i.e. hemochromatosis, dietary iron overload, direct

iron injection); the results of the study highlight that the

direct iron injection is the most harmful of the three.

Another study136 highlights the direct correlation

between the stage of skin exfoliation (dyskeratosis) and the

level of iron in the skin. Yet another study analyses the

toxic effects derived from iron overload in many diseases,

including connective tissue disease (Lupus, rheumatoid

arthritis)137 and in the wound healing process.

Finally, a biopsy study138 was led on many cases

of lower limb dermatitis (lichenoid, tinea, chronic venous

stasis, folliculitis, psoriasis, etc.) where the Gomori test was

used to determine the iron levels in the tissues; the results of

the test were positive in 42% of the cases, thus highlighting

the role iron plays in many chronic inflammatory skin

disease.

Figure 5 - Iron release vs time (Ozaki 1988, with

permission).

Figure 6 - Iron forms vs total tissue iron content (Shoden

1953, © the American Society for Biochemistry and

Molecular Biology).

Conclusions

Many authors studied the whole literature concerning

the relation between iron accumulation and the increased

occurrence of cardiovascular diseases139; even though this

topic is still under discussion, the new techniques in

the dosage of free NTBI highlighted the role played by

free hemoglobin and HMOX1 (heme oxygenase) in the

regulation of the cellular iron and the inducing effect of

some drugs on the HMOX1, such as statins, aspirin and

more particularly lansoprazole, etc.140,141, their protective

effect in the vessel endothelium142 and, lastly, the challenge
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of the chelating therapy in local siderosis143; all of the

abovementioned factors seem to corroborate the hypothesis

that the iron overload is toxic in cardiovascular diseases.

Chronic venous insufficiency is an ideal case to

be investigated by studying NTBI as the hemosiderin

deposition is very consistent.

Endnotes
[i] Brunico (Bruneck) in the province of Bolzano (Bozen), Italy,

at the border between Italy and Austria.
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